

Рабочая программа дисциплины

Б1.О.03 Биологическая химия, биохимия полости рта Обязательная часть

Специальность 31.05.03 Стоматология квалификация: врач-стоматолог Форма обучения: очная **Срок обучения:** 5 лет

Рабочая программа дисциплины рассмотрена и одобрена на заседании Ученого совета института (протокол № 3 от 02.06.2025 г.) и утверждена приказом ректора № 49 от 02.06.2025 г.

Нормативно-правовые основы разработки и реализации рабочей программы дисциплины:

- 1) Федеральный государственный образовательный стандарт высшего образования специалитет по специальности 31.05.03 Стоматология, утвержденный Приказом Министра науки и высшего образования Российской Федерации от 12.08.2020 № 984
 - 2) Общая характеристика образовательной программы.
 - 3) Учебный план образовательной программы.
 - 4) Устав и локальные акты Института.

1. Общие положения

1.1. Цель и задачи освоения дисциплины Биологическая химия, биохимия полости рта:

- 1.1.1. Целью освоения дисциплины Биологическая химия, биохимия полости рта является получение обучающимися системных знаний об протекания закономерностях метаболических процессов, основных определяющих состояние здоровья и адаптации человека на молекулярном, клеточном и органном уровне целостного организма, а также в получении обучающимися навыков применять полученные знания ДЛЯ интерпретации результатов биохимических исследований при решении клинических задач.
 - 1.1.2. Задачи, решаемые в ходе освоения программы дисциплины:
- сформировать систему знаний биохимических и молекулярных основ функционирования организма человека, превращений веществ в организме человека, связи этих превращений с деятельностью органов и тканей, регуляции метаболических процессов и последствиях их нарушения;
- развивать профессионально важные качества, значимые для организации работы и управления лабораторно-диагностических подразделений учреждений различного типа;
- сформировать/развить умения, навыки, компетенции, необходимые в организации профессиональной деятельности;
- сформировать готовность и способность применять знания и умения анализировать данные результатов биохимических исследований и использовать полученные знания для объяснения характера возникающих в организме человека изменений и диагностики заболеваний;
- сформировать/развить навыки аналитической работы с информацией (учебной, научной, нормативно-справочной литературой и другими источниками), с информационными технологиями, диагностическими методами исследованиями;
- сформировать навыки общения с коллегами и пациентами с учетом этики и деонтологии.

1.2. Место дисциплины в структуре образовательной программы

Дисциплина «Биологическая химия, биохимия полости рта» изучается в 3 и 4 семестрах и относится к базовой части Блок 1.О.03 Дисциплин. Является обязательной дисциплиной.

Общая трудоемкость дисциплины составляет 6 з.е.

Для успешного освоения настоящей дисциплины обучающиеся должны освоить следующие дисциплины:

- Химия биологически активных веществ и жизненных процессов;
- Биология с основами генетики;
- Биомеханика.

Знания, умения и опыт практический деятельности, приобретенные

при освоении настоящей дисциплины, необходимы для успешного освоения дисциплин: Внутренние болезни, клиническая фармакология; Имплантология и реконструктивная хирургия полости рта; Клиническая стоматология (хирургия); Неврология; Общая хирургия, хирургические болезни; Челюстнолицевая и гнатическая хирургия.

1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы:

Код и	Наименование индикатора	Планируемые
наименование	достижения компетенции	результаты обучения по
компетенции		дисциплине
выпускника		(модулю), практике
Общепрофессионал	ьные компетенции	
ОПК-8. Способен	ИОПК-8.1 Применяет знания о	Знать:
использовать	течении физико-химических	– основные
основные физико-	процессах в человеческом	метаболические пути
химические,	организме.	превращения углеводов,
математические и		липидов, аминокислот,
естественно-		пуриновых, оснований.
научные понятия и		физико-химические
методы при		процессы и химические
решении		превращения
профессиональных		биологических веществ.
задач		Уметь:
		– применять знания об
		основных классах
		биологических веществ,
		их превращениях в
		различных органах и
		системах организма.
		– применять
		биохимические термины в
		профессиональной
		деятельности.
		Владеть:
		– основными физико-
		химическими,
		естественнонаучными
		понятиями и знаниями о
		процессах, происходящих
		у здоровых людей.
		– навыками
		использования
		фундаментальных знаний
		биологической химии для
		решения задач
		прикладной и
		теоретической медицины.

	– навыками
	использования
	биохимической
	терминологии для
	решения стандартных
	задач профессиональной
	деятельности.

2. Формы работы обучающихся, виды учебных занятий и их трудоемкость

Объём дисциплины	Всего часов	3 семестр часов	4 семестр часов
Общая трудоемкость дисциплины, часов	216	72	144
Контактная работа обучающихся с	100	52	48
преподавателем (по видам учебных занятий)			
(всего) (аудиторная работа):			
Лекционные занятия (всего) (ЛЗ)	28	16	12
Занятия семинарского типа (всего) (СТ)	72	36	36
Практическая подготовка (всего) (ПП)	-	-	-
Самостоятельная работа (всего) (СРС)	80	20	60
Вид промежуточной аттестации обучающегося (экзамен)	36		36

3. Содержание дисциплины (модуля)

3.1. Содержание разделов (модулей), тем дисциплины

3 семестр

№ п/п	Шифр Компе тенции	Наименован ие раздела (модуля), темы дисциплины	Содержание раздела и темы в дидактических единицах
1.	ОПК-8	Тема 1. Химия белков	Функции белков в организме человека. Уровни структурной организации белков. Глобулярные, фибриллярные, трансмембранные белки. Фолдинг белков. Шапероны. Денатурация и ренативация белков. Прионы и прионные болезни. Сложные белки. Строение и функции миоглобина и гемоглобина. Аллостерические эффекты гемоглобина. Гемоглобинопатии.
2.	ОПК-8	Тема 2. Витамины и коферменты. Ферменты.	Представление о витаминах, их классификация. Их структура, биологическая роль, гипо-, гипервитаминозы. Принципы определения витаминов в пищевых продуктах. Водорастворимые витамины. Жирорастворимые витамины. Коферментная,

	1	T	
			антиоксидантная и прогормональная функции витаминов. Ферменты как биокатализаторы. Классификация и номенклатура ферментов. Строение и функция ферментов. Молекулярные механизмы ферментативного катализа. Понятие изоферментов и изоферментных спектров. Аллостерические центры и механизмы регуляции. Другие пути регуляции активности ферментов. Количественное определение активности ферментов в биологических образцах (слюне, десневой жидкости). Ферменты межклеточного матрикса минерализованных тканей зуба. Ферменты, участвующие в минерализации тканей полости рта. Диагностическое значение определения активности ферментов. Энзимопатологии, виды энзимопатий. Энзимодиагностика. Энзимотерапия, направления и подходы применения в лечении заболеваний.
3.	ОПК-8	Тема 3. Биологическ ое окисление.	Подходы применения в лечении заоолевании. Общий путь катаболизма. Окислительное декарбоксилирование пирувата. Цикл трикарбоновых кислот. Регуляция. Анаболические функции цикла трикарбоновых кислот. Анаплеротические реакции. Макроэргические субстраты. Пути синтеза АТФ: субстратное и окислительное фосфорилирование. Окислительное фосфорилирование АДФ. Механизм сопряжения окисления и фосфорилирования. Хемиосмотическая теория Митчелла. Состав, структура и номенклатура дыхательных комплексов и других компонентов цепи переноса электронов, их локализация и функции во внутренней мембране митохондрий. Строение АТФ-синтазы. Механизм функционирования. Регуляция окислительного фосфорилирования. Дыхательный контроль. Механизмы разобщения окисления и фосфорилирования. Физиологическое значение разобщения. UCP-белки. Молекулярно-биологические аспекты функции и дисфункции митохондрий.
4.	ОПК-8	Тема 4. Обмен углеводов.	механизмы переваривания углеводов. Характеристика и действие ферментов, участвующих в полостном и пристеночном пищеварении. Механизмы всасывания углеводов. Транспортёры глюкозы: виды, особенности структуры, функции. Нарушение переваривания и всасывания углеводов синдром мальабсорбции: понятие, биохимические причины, метаболические нарушения и последствия, механизмы развития ведущих типовых симптомов. Пути поступления и превращения углеводов в тканях организма. Ключевая роль глюкозо-6-фосфата, пути обмена. Синтез гликогена. Биологическое значение, реакции, ферменты. Распад гликогена гликогенолиз. Биологическое значение, реакции, ферменты.

обмена гликогена в печени и в мышцах. Гликогенозы и агликогенозы. Гликолиз: понятие, значение, последовательность реакций, регуляция. Этапы аэробного окисления полного глюкозы. Энергетический выход. Судьба продуктов гликолиза условиях. Пируват: пути в аэробных значение, реакции превращения в ацетилСоА и оксалоацетат, энергетический баланс окисления до СО2 и Н2О. Механизмы челночного транспорта водорода через мембрану митохондрий. Анаэробное окисление глюкозы. Судьба продуктов гликолиза в условиях. Глюконеогенез: анаэробных схема, субстраты, биологическая Цикл Кори. роль. Глюкозо-аланиновый цикл. Реципрокная регуляция глюконеогенеза. Особенности гликолиза метаболизма глюкозы в печени, мозге, скелетных мышцах, жировой ткани, клетках крови. Пентозофосфатный путь. Биологическое значение. Реакции окислительного этапа, регуляция. Нарушения пентозофосфатном пути. Дефект глюкозо-6фосфатдегидрогеназы. Метаболизм фруктозы. Нарушения метаболизма фруктозы. Различия метаболизма фруктозы в печени и мышцах. Метаболизм галактозы. Нарушения обмена содержания галактозы. Регуляция глюкозы Роль адреналина, глюкагона и инсулина. крови. Гипер- и гипогликемия: причины возникновения, механизмы срочной и долгосрочной компенсации. Метаболические и клинические последствия острых и хронических гипер- и гипогликемий.

4 семестр

№	Шифр	Наименова	Содержание раздела и темы в дидактических единицах
π/	Компе	ние	
П	тенци	раздела,	
	И	темы	
		дисциплин	
		Ы	
1	2	3	4
1.	ОПК-8	Тема 5.	Механизмы переваривания, всасывания липидов. Ферменты.
		Обмен	Желчь: состав, функции, механизм участия в пищеварении.
		липидов.	Активация и транспорт жирных кислот в митохондрии.
			Механизмы β-окисления жирных кислот: реакции,
			регуляция, энергетический баланс. Кетоновые тела:
			биологическая роль, реакции обмена, регуляция.
			Кетонемия, кетонурия, причины и механизмы развития,
			последствия. Биосинтез жирных кислот. Этапы, реакции,
			строение синтазы жирных кислот, регуляция. Биосинтез
			триацилглицеролов. Молекулярно-биологические аспекты
			регуляции липидного обмена. Холестерол: биологическое
			значение, пути поступления и использования в организме.

			Синтез холестерола (схема). Биосинтез желчных кислот.
			Транспорт холестерола. Гиперхолестеролемия, ее причины,
			последствия. Липопротеины крови: классификация, строение,
			этапы формирования, схема метаболизма Диагностическое
			значение определения липопротеинов. Нарушения липидного
			обмена (атеросклероз, стеаторея, желчекаменная болезнь).
2.	ОПК-8		Переваривание белков в ЖКТ. Принципы нормирования
		Обмен	белка в питании. Азотистый баланс. Характеристика
		белков и	основных компонентов пищеварительных соков (желудка,
		нуклеиновы	кишечника, поджелудочной железы). Механизмы регуляции
		х кислот	секреции пищеварительных соков. Образование и секреция
			HCl. Ферментативный гидролиз белков в желудочно-
			кишечном тракте. Механизмы всасывания аминокислот.
			«Гниение» белков в кишечнике. Роль УДФ-глюкуроновой
			кислоты и ФАФС в процессах обезвреживания и выведения
			продуктов «гниения» (фенол, индол, скатол, индоксил и
			др.). Нарушение переваривания и всасывания белков.
			Белковая недостаточность: причины, метаболические и
			клинические последствия, профилактика. Пути образования
			пула аминокислот в крови и его использование в организме.
			Общие реакции обмена аминокислот: реакции
			переаминирования, прямого и непрямого дезаминирования,
			декарбоксилирования, тканевые особенности. Пути
			использования безазотистого остатка аминокислот.
			Образование биогенных аминов (гистамина, тирамина,
			триптамина, серотонина, у-аминомасляной кислоты). Роль
			биогенных аминов в организме. Схема путей обмена
			серина и глицина, значение каждого пути.
			Обмен цистеина: схема путей, значение. Значение ФАФС в
			биологическом сульфировании. Пути обмена метионина и их
			значение. Образование S-аденозилметионина, его участие в
			реакциях трансметилирования. Ресинтез метионина, роль
			ТГФК и витамина В12 в этом процессе. Связь обменов
			метионина и цистеина. Метионин как липотропный фактор.
			Схема путей обмена глутаминовой и аспарагиновой кислот,
			их биосинтез, участие в обезвреживании аммиака.
			Глутамин как донор аминогруппы при синтезе ряда
			соединений. Образование и использование в организме ГАМК
			и ГОМК. Фенилаланин: схема обмена, реакции образования
			тирозина. Катехоламиновый и меланиновый пути, реакции,
			регуляция. Гомогентизиновый путь (схема).
			Фенилкетонурия, альбинизм, алкаптонурия. Триптофан:
			схема основных путей обмена. Реакции биосинтеза
			серотонина, биологическое значение. Обмен нуклеиновых
			кислот: переваривание и всасывание продуктов гидролиза
			нуклеиновых кислот, тканевой обмен нуклеотидов. Схема
			биосинтеза пуринового кольца. Начальные регуляторные
			реакции биосинтеза пуриновых нуклеотидов. Реакции
			распада пуриновых нуклеотидов до мочевой кислоты.
			Нарушение обмена пуриновых нуклеотидов: гиперурикемия,
			подагра, мочекаменная болезнь.
			Реакции использования и обезвреживания аммиака:
_	_		

3.	ОПК-8	Тема 7. Гормоны.	образование глутамина, аспарагина, мочевины - тканевые особенности. Связь орнитинового цикла с обменом аминокислот и энергетическим обменом. Недостаточность ферментов орнитинового цикла, причины и последствия. Механизмы острой и хронической токсичности аммиака, метаболические и клинические последствия. Гормоны. Концепции прямой и обратной положительной и отрицательной связи; концепция ткани-мишени. Этапы метаболизма гормонов. Рецепторы гормонов, виды: мембранные, сопряженные с G-белками, канальные, каталитические, цитозольные, ядерные, функции, метаболизм. Молекулярные механизмы действия водорастворимых сигнальных молекул (пептидных гормонов, факторов роста, цитокинов и др.). Внутриклеточные посредники действия гормонов: циклические нуклеотиды, пептиды, производные жирных кислот, ИТФ, ДГ, Са ²⁺ и др химическая природа, структура, обмен, функции. Механизмы действия гормонов различных классов. Гормоны гипоталамуса: особенности биосинтеза, структуры, механизмов действия, функций. Тропные гормоны гипофиза; классификация, химическая природа, значение в регуляции функций периферических желез. Адреналин, глюкагон, глюкокортикоиды: строение, влияние на обмен веществ. Инсулин: молекулярные механизмы действия и биологические эффекты. Сахарный диабет. Тиреоидные гормоны: строение, влияние на обмен веществ.
4.	ОПК-8	Тема 8. Биохимия полости рта.	

4. Тематический план дисциплины

4.1. Тематический план контактной работы обучающихся с преподавателем

Период обучения (семестр). Порядковые номера и наименование Количес

п/п	разделов (модулей) (при наличии). Порядковые номера и наименование тем (модулей) модулей. Темы учебных занятий.	конт ной рабо	такт
	3 семестр	ЛЗ	CT
	Тема 1. Химия белков.		
1.	Химия простых белков.	2	
2.	Строение и функции сложных белков.	2	
3.	Химия белков 1.		2
4.	Химия белков 2.		2
5.	Химия белков 3.		2
6.	Текущий рубежный. Химия белков.		2
	Тема 2. Витамины и коферменты. Ферменты.		
7.	Витамины и коферменты.	2	
8.	Ферменты.	2	
9.	Витамины и коферменты. Ферменты 1.		2
10.	Витамины и коферменты. Ферменты 2.		2
11.	Витамины и коферменты. Ферменты 3.		2
12.	Витамины и коферменты. Ферменты 4.		2
13.	Витамины и коферменты. Ферменты 5.		2
14.	Текущий рубежный. Витамины и коферменты. Ферменты.		2
	Тема 3. Биологическое окисление.		
15.	Обмен веществ. Обмен энергии в живых системах.	2	
16.	Биологическое окисление.	2	
17.	Биологическое окисление 1.		2
18.	Биологическое окисление 2.		2
19.	Биологическое окисление 3.		2
20.	Текущий рубежный (модульный контроль). Биологическое окисление.		2
	Тема 4. Обмен углеводов		
21.	Обмен углеводов	4	
22.	Обмен углеводов 1.		2
23.	Обмен углеводов 2.		2
24.	Обмен углеводов 3.		2
25.	Текущий рубежный. Обмен углеводов.		2
	Всего за семестр	16	36
	4 семестр		
	Тема 5. Обмен липидов.		
	Обмен липидов 1.	2	
27.	Обмен липидов 2.	2	
28.	Обмен липидов 1.		2
	Обмен липидов 2.		2
30.	Обмен липидов 3.		2
31.	Текущий рубежный. Обмен липидов.		2
	Тема 6. Обмен белков		
32.		2	
33.	Обмен белков 2.	2	
34.	Обмен белков 1.		2
	Обмен белков 2.		2
36.	Обмен белков 3.		2

37.	Обмен белков 4.		2
38.	Обмен белков 5.		2
39.	Текущий рубежный. Обмен белков.		2
	Тема 7. Гормоны		
40.	Гормоны.	2	
41.	Гормоны 1.		2
42.	Гормоны 2.		2
43.	Текущий рубежный (модульный контроль). Гормоны.		2
	Тема 8. Биохимия полости рта		
44.	Биохимия полости рта.	2	
45.	Биохимия полости рта 1.		2
46.	Биохимия полости рта 2.		2
47.	Биохимия полости рта 3.		2
48.	Текущий рубежный. Биохимия полости рта.		2
49.	Итоговое занятие		2
	Всего часов за семестр	12	36

4.2. Содержание самостоятельной работы обучающихся

№ п/п	(семестр). Наименование раздела (модуля), тема дисциплины	Содержание самостоятельной работы обучающихся	Всего часов
3 cer	иестр		
1.	Тема 1. Химия	Подготовка к учебным аудиторным занятиям: Проработка теоретического материала учебной дисциплины; Составление глоссария, Подготовка к текущему контролю	6
2.	Тема 2. Витамины и коферменты. Ферменты.	Подготовка к учебным аудиторным занятиям: Проработка теоретического материала учебной дисциплины; Составление глоссария, Подготовка к текущему контролю	4
3.	Тема 3. Биологическое окисление.	Подготовка к учебным аудиторным занятиям: Проработка теоретического материала учебной дисциплины; Составление глоссария, Подготовка к текущему контролю	6
4.	Тема 4. Обмен углеводов.	Подготовка к учебным аудиторным занятиям: Проработка теоретического материала учебной дисциплины; Составление глоссария, Подготовка к текущему контролю	4
	Всего за семестр		20
4 cer	иестр		
5.	Тема 5. Обмен липидов.	Подготовка к учебным аудиторным занятиям: Проработка теоретического материала учебной дисциплины;	15

		Подготовка к текущему контролю	
6.	Тема 6. Обмен	Подготовка к учебным аудиторным занятиям:	
	белков и	Проработка теоретического материала учебной	15
	нуклеиновых	дисциплины;	13
	кислот.	Подготовка к текущему контролю	
7.	Тема 7. Гормоны.	Подготовка к учебным аудиторным занятиям:	
		Проработка теоретического материала учебной	15
		дисциплины;	13
		Подготовка к текущему контролю	
8.	Тема 8. Биохимия	Подготовка к учебным аудиторным занятиям:	
	полости рта.	Проработка теоретического материала учебной	15
		дисциплины;	13
		Подготовка к текущему контролю	
	Всего за семестр		60

5. Организация текущего контроля успеваемости обучающихся

- 5.1. Задачи, формы, методы проведения текущего контроля указаны в п. 2. Положения «О текущем контроле успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, программам специалитета в Автономной некоммерческой организации высшего образования «Уральский медицинский институт».
- 5.2. Оценка результатов освоения обучающимся программы дисциплины в семестре осуществляется преподавателем на занятиях по традиционной шкале оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- 5.3. Критерии оценивания результатов текущей успеваемости обучающегося по формам текущего контроля успеваемости обучающихся.

Текущий контроль успеваемости проводится в следующих формах: учет активности, опрос устный, опрос письменный, решение практической (ситуационной) задачи.

5.3.1. Критерии оценивания устного опроса в рамках текущего контроля успеваемости обучающегося.

По результатам устного опроса выставляется:

- а) оценка «отлично» в том случае, если обучающийся:
- выполнил задания, сформулированные преподавателем;
- демонстрирует глубокие знания по разделу дисциплины (в ходе ответа раскрывает сущность понятий, явлений, принципов, законов, закономерностей, теорий, грамотно использует современную научную терминологию);
- грамотно и логично излагает материал, дает последовательный и исчерпывающий ответ на поставленные вопросы;
 - делает обобщения и выводы;
 - Допускаются мелкие неточности, не влияющие на сущность ответа.
 - б) оценка «хорошо» в том случае, если обучающийся:
 - выполнил задания, сформулированные преподавателем;

- демонстрирует прочные знания по разделу дисциплины (в ходе ответа раскрывает сущность понятий, явлений, принципов, законов, закономерностей, теорий, грамотно использует современную научную терминологию);
- грамотно и логично излагает материал, дает последовательный и полный ответ на поставленные вопросы;
 - делает обобщения и выводы;
- Допускаются мелкие неточности и не более двух ошибок, которые после уточнения (наводящих вопросов) обучающийся способен исправить.
 - в) оценка «удовлетворительно» в том случае, если обучающийся:
 - частично выполнил задания, сформулированные преподавателем;
- демонстрирует знания основного материала по разделу дисциплины (в ходе ответа в основных чертах раскрывает сущность понятий, явлений, принципов, законов, закономерностей, теорий, использует основную научную терминологию);
 - дает неполный, недостаточно аргументированный ответ;
 - не делает правильные обобщения и выводы;
 - ответил на дополнительные вопросы;
- Допускаются ошибки и неточности в содержании ответа, которые исправляются обучающимся с помощью наводящих вопросов преподавателя.
 - г) оценка «неудовлетворительно» в том случае, если обучающийся:
- частично выполнил или не выполнил задания, сформулированные преподавателем;
- демонстрирует разрозненные знания по разделу дисциплины (в ходе ответа фрагментарно и нелогично излагает сущность понятий, явлений, принципов, законов, закономерностей, теорий, не использует или слабо использует научную терминологию);
- допускает существенные ошибки и не корректирует ответ после дополнительных и уточняющих вопросов преподавателя;
 - не делает обобщения и выводы;
 - не ответил на дополнительные вопросы;
 - отказывается от ответа; или:
- во время подготовки к ответу и самого ответа использует несанкционированные источники информации, технические средства.
- 5.3.2. Критерии оценивания результатов тестирования в рамках текущего контроля успеваемости обучающегося:

Оценка	Процент правильных ответов
2 (неудовлетворительно)	Менее 70%
3 (удовлетворительно)	70-79 %
4 (хорошо)	80-89 %
5 (удовлетворительно)	90-100 %

6. Организация промежуточной аттестации обучающихся

- 6.1. Форма и порядок проведения промежуточной аттестации указаны в п. 3,4 Положения «О текущем контроле успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, программам специалитета в Автономной некоммерческой организации высшего образования «Уральский медицинский институт».
- 6.2. Форма промежуточной аттестации согласно учебному плану экзамен в 4 семестре. Форма организации промежуточной аттестации: устный опрос по билетам и устное собеседование по билету, тестирование.
 - 6.3. Перечень вопросов для подготовки к промежуточной аттестации:

Химия белков

- 1. Уровни организации белковых молекул. Первичная, вторичная, третичная и четвертичная структуры белка и их краткая характеристика. Связи, их стабилизирующие.
- 2. Первичная и вторичная структуры белка, связи, участвующие в их формировании. Элементы вторичной структуры: α-спираль, β-структура (β-складчатый слой) и β-повороты. Факторы, влияющие на устойчивость α-спирали.
- 3. Третичная структура белков, связи, ее стабилизирующие. Глобулярные белки: альбумины, глобулины, гистоны. Их строение, локализация в организме и кислотно-основные свойства.
- 4. Фибриллярные белки. Коллаген как основной белок соединительной ткани: строение, биологическая роль.
- 5. Четвертичная структура белков, связи, ее стабилизирующие. Особенности строения и функционирования олигомерных белков на примере гемоглобина. Роль гистидинов F8 и E7 в организации активного центра и функционировании гемоглобина.
- 6. Хромопротеины, важнейшие представители, строение и роль в организме. Типы гемоглобинов и их роль в процессе онтогенеза.
- 7. Кооперативные изменения конформации протомеров Hb при присоединении и отдаче O2. Аллостерическая регуляция сродства Hb к O2 лигандами CO2, H^+ и БФГ.
- 8. Строение и функции гемоглобина и миоглобина. Их сходство и различия.
- 9. Гемоглобинопатии: талассемия, серповидно-клеточная анемия Причины возникновения и клинические симптомы.
- 10. Строение нуклеиновых кислот. Первичная структура нуклеиновых кислот и связи, ее формирующие. Функции нуклеиновых кислот в живых организмах.
- 11. Вторичная структура ДНК и РНК. Комплементарность азотистых оснований. Третичная структура ДНК, строение нуклеосом.
- 12. Лабильность пространственной структуры белков. Денатурация белков. Факторы, вызывающие денатурацию. Ренативация. Фолдинг и рефолдинг белка. Роль шаперонов в этих процессах. Прионовые болезни:

причины возникновения и клинические симптомы.

13. Сложные белки; их классификация и примеры различных классов.

Витамины и коферменты. Ферменты.

- 1. Общая характеристика витаминов, их биологическое значение и классификация. Метаболизм витаминов в организме человека. А-, гипо-и гипервитаминозы, возможные причины их появления.
- 2. Витамин В1 и его кофермент. Их строение и участие в биохимических реакциях. Пищевые источники. Симптомы гиповитаминоза.
- 3. Витамин Н и его кофермент. Их строение и участие в биохимических реакциях. Пищевые источники. Симптомы гиповитаминоза.
- 4. Витамин В12 и его коферменты. Участие в биохимических реакциях. Пищевые источники. Симптомы недостаточности В12.
- 5. Витамин РР, его формы и коферменты. Строение и участие в биохимических реакциях. Различия в биологических функциях НАД+ и НАДФ+. Пищевые источники. Симптомы гиповитаминоза.
- 6. Витамин В2 и его коферменты. Их строение и участие в биохимических реакциях. Пищевые источники. Симптомы гиповитаминоза.
- 7. Витамин В6, его формы и коферменты. Строение и участие в биохимических реакциях. Пищевые источники. Симптомы гиповитаминоза.
- 8. Пантотеновая кислота и ее коферменты. Их строение и участие в биохимических реакциях. Пищевые источники. Симптомы гиповитаминоза.
- 9. Фолиевая кислота и ее кофермент. Их строение и участие в биохимических реакциях. Пищевые источники. Симптомы гиповитаминоза.
- 10. Витамин А, его формы и кофермент. Их строение и участие в биохимических процессах. Пищевые источники. Симптомы гиповитаминоза.
- 11. Витамин D и его активные формы. Их строение и участие в биохимических процессах. Пищевые источники. Симптомы гипо- и гипервитаминозов.
- 12. Витамин С, его строение и биологическая роль. Пищевые источники. Симптомы гипо-и авитаминоза.
- 13. Витамин Е, его формы, строение и биологические функции. Пищевые источники. Симптомы гиповитаминоза.
- 14. Витамин К, его формы, строение и биологические функции. Пищевые источники. Симптомы гиповитаминоза. Синтетические аналоги витамина К и его антивитамины, их использование в качестве лекарственных препаратов.
- 15. Ферменты. Их биологическая роль. Строение ферментов и организация их активного центра.
- 16. Специфичность действия ферментов (реакционная и субстратная). Типы субстратной специфичности. Примеры.
- 17. Механизм действия ферментов. Теории Фишера («ключзамок») и Кошланда (индуцированное соответствие). Фермент-субстратные

комплексы.

- 18. Влияние различных факторов среды на скорость ферментативной реакции. Зависимость скорости реакции от температуры и рН среды.
- 19. Зависимость скорости ферментативной реакции от концентрации фермента и концентрации субстрата. Константа Михаэлиса (Кm) и максимальная скорость реакции (Vmax). Графики Михаэлиса-Ментен и Лайнуивера-Бэрка.
- 20. Регуляция активности ферментов. Аллостерическая регуляция, частичный протеолиз и ковалентная модификация.
- 21. Ингибиторы ферментной активности. Обратимое и необратимое ингибирование. Типы обратимого ингибирования. Примеры.
- 22. Изоферменты: их строение и роль в клеточном метаболизме. Использование изоферментов в энзимодиагностике.
- 23. Классификация и номенклатура ферментов. Краткая характеристика каждого класса: катализируемые реакции, природа ферментов, коферменты.
- 24. Энзимопатология. Виды энзимопатий и возможные причины их возникновения.
- 25. Энзимодиагностика. Использование ферментов и изоферментов для диагностики заболеваний.
 - 26. Энзимотерапия. Применение ферментов для лечения заболеваний.

Биологическое окисление

- 1. Эндергонические и экзергонические реакции в живой клетке. Макроэргические соединения. АТФ как универсальный источник химической энергии в организме. Способы синтеза АТФ: субстратное фосфорилирование.
- 2. Понятие о метаболизме. Энергетическое сопряжение катаболизма и анаболизма. ATФ как универсальный источник химической энергии в организме.
- 3. Окислительное декарбоксилирование пирувата: его роль в клеточном метаболизме и химизм процесса. Строение ПДК.
- 4. Биологическое значение и функции цикла трикарбоновых кислот. Реакции цикла Кребса и их локализация в клетке. Связь с дыхательной цепью митохондрий. Регуляция ЦТК.
- 5. Реакции цикла трикарбоновых кислот. Амфиболические функции цикла Кребса. Реакции, пополняющие цикл.
- 6. Дыхательная цепь митохондрий, ее строение и основные принципы функционирования. Переносчики электронов в дыхательной цепи.
- 7. Структурная организация митохондриальной цепи транспорта электронов. Трансмембранный электрохимический потенциал, его формирование, величина и биологическое значение.
- 8. Представление о процессах окислительного фосфорилирования. Сопряжение и разобщение процессов окисления и фосфорилирования.
 - 9. Общие и специфические пути катаболизма белков, углеводов и

липидов.

- 10. Токсичность кислорода: образование активных форм кислорода (супероксид анион, перекись водорода, гидроксильный радикал). Повреждение мембран в результате перекисного окисления липидов. Защита от токсического действия кислорода: неферментативные и ферментативные антиоксиданты.
- 11. Микросомальное окисление, его роль в процессах обезвреживании токсичных продуктов и ксенобиотиков.

Обмен углеводов

- 1. Основные углеводы пищи, их строение. Переваривание и всасывание углеводов. Нарушение переваривания углеводов.
- 2. Общая схема источников и путей расходования глюкозы в организме.
- 3. Взаимопревращения моносахаридов: реакции превращения галактозы в глюкозу. Галактоземия: причины, клинические симптомы.
- 4. Взаимопревращения моносахаридов: реакции превращения фруктозы в глюкозу. Фруктозурия и нетолерантность к фруктозе: причины, клинические симптомы.
- 5. Биосинтез гликогена: химизм процесса и его регуляция. Агликогенозы: причины, клинические симптомы.
- 6. Мобилизация гликогена. Реакции процесса и его гормональная регуляция. Гликогенозы: причины возникновения, клинические симптомы.
 - 7. Гликогенолиз: химизм процесса и его регуляция.
- 8. Гликолиз: его биологическое значение, последовательность реакций и энергетический выход процесса. Гликолитическая оксидоредукция. Реакции субстратного фосфорилирования.
- 9. Биосинтез глюкозы (глюконеогенез) из аминокислот, глицерина и лактата. Биологическое значение и гормональная регуляция процесса. Реакции обходных путей для необратимых реакций гликолиза.
- 10. Цикл Кори: взаимосвязь гликолиза в мышцах и глюконеогенеза в печени.
- 11. Аэробное окисление глюкозы: биологическое значение, последовательность реакций и энергетический выход процесса.
- 12.Пентозофосфатный путь превращения глюкозы. Реакции первой (окислительной) стадии процесса. Понятие о превращениях второй (неокислительной) стадии. Биологическое значение обеих стадий. Интенсивность пентозофосфатного пути в различных тканях.
- 13. Пентозофосфатный путь превращения глюкозы, его роль в клеточном метаболизме. Реакции первой (окислительной) стадии процесса. Особенности пентозофосфатного пути в жировой ткани, эритроцитах и пролиферирующих клетках.
- 14. Челночные механизмы переноса активного водорода из цитоплазмы в матрикс митохондрии. Малат-аспартатный и глицерофосфатный челночные механизмы.
 - 15. Сахарный диабет: причины возникновения, симптомы, принципы

лечения.

16. Диабет, его типы и причины возникновения. Осложнения сахарного диабета. Гликозилирование белков крови и гемоглобина.

Обмен липидов

- 1. Переваривание липидов. Всасывание продуктов переваривания. Роль желчных кислот в переваривании и всасывании липидов. Ресинтез и транспорт экзогенных жиров. Нарушения переваривания и всасывания. Стеаторея.
- 2. Липиды: их классификация, строение и биологическая роль в жизнедеятельности клетки.
- 3. Биосинтез триацилглицеридов: последовательность реакций и локализация процесса в организме. Гормональная регуляция синтеза триацилглицеридов.
- 4. Распад триацилглицеридов: последовательность реакций и локализация процесса в организме. Гормональная регуляция распада триацилглицеридов.
- 5. Биосинтез фосфолипидов: последовательность реакций и локализация процесса в организме. Липотропные факторы. Значение фосфолипидов в жизнедеятельности клетки.
- 6. Ресинтез триацилглицеридов и фосфолипидов: химизм процесса и его локализация в организме. Образование хиломикронов и транспорт липидов.
- 7. Желчные кислоты: схема их образования, строение и биологическая роль. Энтерогепатическая циркуляция желчных кислот.
- 8. Катаболизм жирных кислот с четным числом углеродных атомов: химизм процесса, его локализация в клетке и энергетический выход.
- 9. Особенности β-окисления жирных кислот с нечетным числом углеродных атомов и ненасыщенных жирных кислот. Последовательность реакций и их локализация в клетке.
- 10. Биосинтез жирных кислот: последовательность реакций, их локализация в клетке и регуляция процесса. Источники ацетил-КоА и НАДФН(H+), необходимых для синтеза жирных кислот.
- 11. Биосинтез жирных кислот: последовательность реакций. Особенности синтеза ненасыщенных жирных кислот и кислот с числом углеродных атомов больше. Эссенциальные жирные кислоты, их биологическое значение.
- 12. Основные этапы биосинтеза холестерина. Последовательность реакций (включая образование мевалоновой кислоты). Регуляция процесса. Источники ацетил-КоА и НАДФН(Н+), необходимых для синтеза холестерина. Транспорт холестерина в организме. Биохимические причины развития атеросклероза.
- 13. Холестерин: строение и медико-биологическое значение. Роль холестерина в построении биологических мембран. Транспорт холестерина. Биохимические причины развития атеросклероза.

- 14. Кетоновые тела: строение и реакции образования. Метаболизм кетоновых тел в здоровом организме. Причины усиления кетогенеза при голодании и сахарном диабете.
- 15. Кетоновые тела: строение, биологическое значение и основные причины их образования. Кетогенез при голодании и сахарном диабете. Кетоацидоз.
 - 16. Взаимосвязь углеводного и липидного обменов.
- 17. Классификация сфинголипидов, их строение и физиологическая роль. Представление о сфинголипидозах. Причины их возникновения.
 - 18. Патологии липидного обмена. Желчекаменная болезнь.
 - 19. Липопротеины плазмы крови.

Обмен белков и нуклеиновых кислот

- 1. Общая схема источников и путей использования аминокислот в тканях. Классификация аминокислот по возможности их синтеза в организме. Значение незаменимых аминокислот. Квашиоркор: причины возникновения, симптомы, принципы лечения.
- 2. Роль белков в питании. Переваривание белков в желудочнокишечном тракте. Особенности активации протеолитических ферментов. Образование и значение HCl в пищеварении.
- 3. Трансаминирование аминокислот, биологическая роль этого процесса. Роль пиридоксальфосфата. Значение аминотрансфераз (АЛТ, АСТ) для диагностики заболеваний.
- 4. Декарбоксилирование аминокислот, биологическая роль этого процесса. Образование гистамина, серотонина, путресцина и ГАМК. Роль биогенных аминов.
- 5. Типы реакций дезаминирования аминокислот и их значение в клеточном обмене.
- 6. Пути образования и обезвреживания аммиака в организме. Основные переносчики аммиака из различных тканей в печень и почки. Гипераммониемия.
- 7. Орнитиновый цикл образования мочевины: химизм процесса, его биологическое значение и локализация в организме. Нарушения синтеза и выведения мочевины.
- 8. Цикл мочевины: биологическая роль и локализация в организме. Связь орнитинового цикла с ЦТК.
- 9. Механизмы обезвреживания аммиака в нервной и мышечной ткани. Глюкозоаланиновый цикл.
- 10. Глицин, его строение и роль в обмене веществ. Основные пути метаболизма глицина.
- 11. Глутамат и аспартат, их химическое строение и роль в обмене веществ. Основные пути метаболизма.
- 12. Цистеин и метионин: химическое строение и роль в обмене веществ. Основные пути метаболизма. Роль S-аденозилметионина.
 - 13. Роль лизина и аргинина в клеточном метаболизме.
 - 14. Триптофан и пути его катаболизма (кинурениновый и

серотониновый). Патологии обмена триптофана: синдром Кнаппа (ксантуренурия) и болезнь Хартнупа.

- 15. Общая схема путей метаболизма Фен и Тир в различных тканях.
- 16. Метаболические пути фенилаланина и тирозина. Схема катаболизма фенилаланина в печени. Патологии процесса: фенилкетонурия, тирозинемия, алкаптонурия. Причины возникновения, симптомы, лечение.
- 17. Метаболические пути фенилаланина и тирозина. Схема катаболизма фенилаланина в меланоцитах и мозговом веществе надпочечников (в нервной ткани). Патологии процесса: альбинизм, болезнь Паркинсона. Причины возникновения, симптомы, лечение.
- 18. Распад пуриновых нуклеотидов и нарушение этого процесса (ксантинурия, гиперурикемия и подагра).
- 19. Образование и использование фосфорибозилпирофосфата (ФРПФ) в синтезе пуриновых и пиримидиновых нуклеотидов.
- 20. Происхождение атомов пуринового ядра при синтезе пуринов de novo. Химизм процесса, начиная с инозиновой кислоты.
- 21. «Запасные» пути синтеза пуриновых и пиримидиновых нуклеотидов (реутилизация азотистых оснований и нуклеозидов). Химизм процессов. Синдром Леша-Найхана: причина и клинические симптомы.
 - 22. Основные этапы распада пиримидиновых нуклеотидов.
- 23. Биосинтез УМФ. Оротовая ацидурия: причины, биохимические и клинические симптомы, лечение.
- 24. Биосинтез ЦМФ и ТМФ (из УМФ). Образование дезоксирибонуклеотидов (из рибонуклеотидов).
- 25. Катаболизм гемоглобина. Распад гема, образование билирубина. Прямой и непрямой билирубин их свойства. Гемолитическая желтуха: причины, биохимические и клинические симптомы.
- 26. Метаболизм билирубина. Обтурационная (механическая) желтуха: причины, биохимические симптомы, диагностика.
- 27. Метаболизм билирубина. Паренхиматозная желтуха, причины, биохимические симптомы, диагностика.
- 28. Метаболизм билирубина. Гемолитическая желтуха и физиологическая желтуха новорожденных: причины, биохимические симптомы.
- 29. Биосинтез гема. Эритропоэтическая порфирия (болезнь Гюнтера): причины, биохимические и клинические симптомы.
- 30. Биосинтез гема. Печеночная (острая перемежающаяся) порфирия: причины, биохимические и клинические симптомы.
- 31. Синтез белка на рибосомах. Условия необходимые для реализации этого процесса.
- 32. Трансляция как процесс реализации генетической информации в структурах, синтезируемых на рибосомах полипептидных цепей
 - 33. Взаимосвязь обмена углеводов, липидов и белков.

Гормоны

1. Иерархия регуляторных систем. Гормональная регуляция

метаболизма. Механизм отрицательной обратной связи.

- 2. Гормоны пептидной природы и адреналин. Механизм действия на клетки-мишени: локализация рецепторов, внутриклеточные посредники передачи гормонального сигнала, биологический эффект.
- 3. Механизм действия стероидных и тиреоидных гормонов на клетки-мишени. Локализация рецепторов, характер воздействия и биологический эффект.
- 4. Гормоны гипоталамуса: их химическая природа и биологическое действие. Схема взаимосвязи регуляторных систем организма, механизм отрицательной обратной связи.
- 5. Гормоны передней доли гипофиза: их химическая природа и физиологическое действие. Патологии: гипо- и гиперфункции гипоталамогипофизарной системы (нанизм (карликовость), гигантизм, акромегалия).
- 6. Гормоны средней и задней долей гипофиза: их химическая природа и физиологическое действие. Патологии: несахарный диабет причины, биохимические и клинические симптомы.
- 7. Гормоны коркового вещества надпочечников (глюко- и минералокортикоиды): их химическая природа и механизм действия. Влияние на углеводный и минеральный обмен. Патологии: гипо- и гиперфункции коры надпочечников (болезнь Аддисона, Иценко-Кушинга и др.).
- 8. Половые гормоны (андрогены и эстрогены): их химическая природа, физиологические функции и механизм действия. Железы, участвующие в их синтезе и секреции.
- 9. Гормоны мозгового слоя надпочечников (катехоламины): их химическое строение, физиологические функции и механизм действия. Патологии мозгового вещества надпочечников: феохромоцитома.
- 10. Гормоны щитовидной железы (йодтиронины): их химическое строение, физиологические функции и механизм действия. Патологии щитовидной железы: гипо- и гипертиреозы (гипотиреоз новорожденных, микседема, эндемический зоб и базедова болезнь).
 - 11. Роль инсулина и глюкагона в регуляции углеводного обмена.
- 12. Инсулин: химическая природа, механизм действия на клеткимишени и биологические эффекты (влияние на обмен углеводов, липидов и белков). Возможные причины инсулиновой недостаточности. Сахарный диабет.
- 13. Эйкозаноиды (простагландины и тромбоксаны): их химическая природа и основные биологические эффекты. Химическое строение предшественника эйкозаноидов.

Биохимия полости рта

- 1. Биохимический состав зуба, его органические компоненты.
- 2. Растворимые белки, входящие в состав тканей зуба, мягких тканей и слюны.
- 3. Роль щелочной фосфатазы в формировании органического матрикса зуба.

- 4. Роль кислой фосфатазы в фосфорном обмене зуба.
- 5. Нерастворимый белок-коллаген, этапы его синтеза и роль витамина С в синтезе этого белка.
- 6. Роль гликогена, гликозаминогликанов, цитрата в слюне и костных тканях. Влияние гормонов и витаминов на включение ионов кальция в ткани.
- 7. Минерализация и деминерализация тканей зуба: стадии, минеральный состав, роль витаминов A, D, E, K.
 - 8. Эмаль, дентин и пульпа: состав, функции, проницаемость.
- 9. Биохимические предпосылки развития цинги. Основные участники процесса.
 - 10. Гормональная регуляция кальциевого гемостаза.
- 11. Биохимические изменения в тканях зуба при кариесе, гиперплазии, гипоплазии, кислотном некрозе.
 - 12. Функции и свойства слюны, ее состав.
- 13. Кислые и основные белки ротовой полости, богатые пролином, их роль.
- 14. Гликозилированные белки ротовой полости, богатые пролином, их роль.
- 15. Белки ротовой полости, богатые тирозином, их роль в фосфорнокальциевом обмене.
 - 16. Муцины, особенности строения, роль этих белков.
- 17. Лактоферрин механизм антибактериального действия и роль этого белка в поддержании иммунитета полости рта.
- 18. Ферменты слюны: гликозидазы, фосфатазы, протеазы, нуклеазы. Примеры ферментов и механизм их действия.
 - 19. Функции белков полости рта, конкретные примеры.
 - 20. Теории развития кариеса.
- 21. Биохимический состав зубного налета и факторы, способствующие его формированию. Роль рН.
- 22. Ферменты, минералы и микроорганизмы, способствующие формированию зубного налета.
 - 23. Белковый состав волокнистых структур пульпы.
- 24. Основные минералы в составе слюны. Роль в биохимии ротовой полости.
 - 25. Белковый состав слюны. Ферменты слюны.
- 7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлены в разработке «Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине»
- 7.1. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (по периодам освоения образовательной программы) согласно п. 1.3. настоящей рабочей программы дисциплины.

Порядок промежуточной аттестации обучающегося по дисциплине (модулю) в форме экзамена:

Промежуточная аттестация по дисциплине в форме экзамена организуется в период экзаменационной сессии согласно расписанию экзаменов.

8. Методические указания обучающимся по освоению дисциплины

Обучение по дисциплине «Биологическая химия, биохимия полости рта» складывается из контактной работы, включающей лекционные занятия, занятия семинарского типа (практические занятия, коллоквиумы и др.), самостоятельной работы и промежуточной аттестации.

Лекционные занятия проводятся с использованием демонстрационного материала в виде слайдов и учебных фильмов.

Занятия семинарского типа (практические занятия) проходят в учебных аудиториях. В ходе занятий студенты осваивают компетенции, разбирают биохимические процессы и их нарушения, решают ситуационные задачи.

Коллоквиум является важным видом занятия, в рамках которого проводится текущий рубежный контроль успеваемости студента. При подготовке к коллоквиумам студенту следует внимательно изучить материалы лекций и рекомендуемую литературу.

Самостоятельная работа студента направлена на подготовку к текущему тематическому и текущему рубежному контролям успеваемости. Самостоятельная работа включает в себя проработку лекционных материалов, изучение рекомендованной по данному курсу учебной литературы, изучение информации, представленной в Интернете.

9. Учебно-методическое, информационное и материально-техническое обеспечение дисциплины

9.1. Основная и дополнительная литература по дисциплине:

Основная литература:

	Литература	Режим доступа к электронному
1.	Биохимия тканей и жидкостей полости рта: учебное пособие / Вавилова Т. П Москва: ГЭОТАР-Медиа, 2019 208 с.	по личному логину и паролю в электронной библиотеке: ЭБС
2.	Биохимия: учебник / под ред. Е. С. Северина 5-е изд., испр. и доп Москва: ГЭОТАР- Медиа, 2019 768 с	Консультант студента

3.	Биохимия с упражнениями и задачами: учебник / под	
	ред. А. И. Глухова, Е. С. Северина - Москва: ГЭОТАР-	
	Медиа, 2019 384 с.	

Дополнительная литература:

	Литература	Режим доступа к
		электронному ресурсу
5	Биохимия: руководство к практическим занятиям/Чернов Н. Н., Березов Т. Т., Буробина С. С. и др. / Под ред. Н. Н. Чернова - Москва: ГЭОТАР-Медиа, 2009 240 с.	по личному логину и паролю в электронной библиотеке: ЭБС Консультант студента

9.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 1. Режим доступа к электронному ресурсу: по личному логину и паролю в электронной библиотеке: ЭБС Консультант студента
- 2. Система электронного обучения (виртуальная обучающая среда) «Moodle»
 - 3. Федеральный портал Российское образование http://www.edu.ru
 - 4. Научная электронная библиотека http://www.elibrary.ru
- 5. Федеральная электронная медицинская библиотека (ФЭМБ) http://www.femb.ru
- 6. Медицинская on-line библиотека Medlib: справочники, энциклопедии, монографии по всем отраслям медицины на русском и английском языках http://med-lib.ru
- 7. ИС «Единое окно доступа к образовательным ресурсам» предоставляет свободный доступ к каталогу образовательных интернетресурсов и полнотекстовой электронной учебно-методической библиотеке для общего и профессионального образования http://window.edu.ru
- 8. Медицинская литература: книги, справочники, учебники http://www.booksmed.com
 - 9. Публикации BO3 на русском языке https://www.who.int
- 10. Digital Doctor Интерактивное интернет-издание для врачей интернистов и смежных специалистов https://digital-doc.ru
 - 11. Русский медицинский журнал (РМЖ) https://www.rmj.ru

Перечень информационных и иных образовательных технологий, используемых при осуществлении образовательного процесса:

- 1. Автоматизированная образовательная среда института.
- 2. Операционная система Übuntu LTS

- 3.Офисный пакет «LibreOffice»
- 4. Firefox

9.3 Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа (практических занятий), для проведения групповых консультаций, индивидуальных консультаций, для текущего контроля и промежуточной аттестации: парты, стулья обучающихся, стол преподавателя, доска маркерная, стул преподавателя, APM преподавателя: проектор, экран, компьютер (монитор, системный блок, клавиатура, мышь), бактерицидный облучатель воздуха рециркуляторного типа.

Микроскоп, препараты, шкаф вытяжной, шкаф для лабораторной посуды, шкаф для химических реактивов.

Колба коническая, капельница-дозатор, набор склянок для растворов реактивов, пробирка ПХ-14, спиртовка лабораторная литая, стакан химический, штатив для пробирок 10 гнезд (полиэт.), воронка d=75 мм ПП, палочка стеклянная, набор № 1 В «Кислоты», набор № 3 ВС «Щелочи», набор № 5 С «Органические вещества», набор № 6 С «Органические вещества», набор № 12 ВС «Неорганические вещества», набор № 13 ВС «Галогениды», набор № 14 ВС «Сульфаты, сульфиты», набор № 16 ВС «Металлы, оксиды», набор № 17 С «Нитраты» (серебра нитрат -10 гр), набор № 20 ВС «Кислоты».

Цифровое образовательное приложение «Химия. Виртуальная лаборатория. Задачи. Тренажеры. Тесты»

Каждый обучающийся в течение всего периода обучения обеспечен индивидуальным неограниченным доступом к электронной информационно-образовательной среде института из любой точки, в которой имеется доступ к информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет») как на территории института, так и вне ее.

Электронная информационно-образовательная среда института обеспечивает:

- доступ к учебному плану, рабочей программе дисциплины, электронным учебным изданиям и электронным образовательным ресурсам, указанным в рабочей программе дисциплины;
- формирование электронного портфолио обучающегося, в том числе сохранение его работ и оценок за эти работы.

Помещение (учебная аудитория) для самостоятельной работы обучающихся оснащено компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду Института.

Институт обеспечен необходимым комплектом программного обеспечения.

Обучающимся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных

технологий, к современным профессиональным базам данных и информационным справочным системам.

Обучающиеся из числа инвалидов и лиц с ОВЗ обеспечены печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.